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FIZIKA BSc, III. évfolyam / 1. félév 
„Optika” – gyakorlatjegyzet 

7. GYAKORLAT 
Dr. Erdei Gábor, 2024-10-24 

1. Többhullám interferencia alkalmazása diffrakciós rács esetén  

fy = 1200 vp/mm, D = 50 mm, skalár közelítés, merőleges beesés, λ = 500 nm. Mekkora az első 

diffraktív rend szöge, m=1? A rácsperiódus a = 1/fy = 833,3 nm. A rácsegyenlet: 

𝛿 =
2𝜋

𝜆
sin 𝜃𝑚 ∙ 𝑎 = 𝑚2𝜋 (1) 

Ha m = 1: 

sin 𝜃𝑚=1 =
𝜆

𝑎
= 0.6  →   𝜃𝑚=1 = 36,9°. (2) 

Ehhez képest hány fokos Δ szögeltérítésnél van az első minimumhely? A diffraktált fény 
iránykarakterisztikája: 

𝐼(𝛿) = 𝐼1 (
sin(𝛿𝑁 2⁄ )

sin(𝛿 2⁄ )
)

2

, (3) 

ennek az első zérushelye itt van: 

Δ𝛿𝑁 2⁄ = 𝜋  →   Δ𝛿 =
2𝜋

𝑁
(4) 

(1)-ből: 

Δ𝛿 =
2𝜋

𝜆
Δsin 𝜃 ∙ 𝑎 =

2𝜋

𝑁
  →   Δsin 𝜃 =

𝜆

𝑎𝑁
=

𝜆

𝐷
(5) 

Kihasználva, hogy 𝑁 ≫ 1, azaz Δ𝛿 ≪ 2𝜋 𝑁⁄ , (5)(1)-ből egyszerűen kiszámolható Δ𝜃: 

Δsin 𝜃 ≈
d sin 𝜃

d𝜃
Δ𝜃 = Δ𝜃 ⋅ cos 𝜃 =

𝜆

𝑎𝑁
=

𝜆

𝐷
(6) 

Δ𝜃 ⋅ 0,8 = 10−5   →   Δ𝜃 = 0,013 mrad. (7) 

Mekkora Δλ értékkel kell arrébbhangolni a hullámhosszat, hogy az első rend iránya pont a fent 
kiszámított értékkel változzon meg (Rayleigh-kritérium)? (2) és (5) felhasználásával: 

sin 𝜃𝑚=1 + Δsin 𝜃 =
𝜆 + Δ𝜆

𝑎
(8) 

𝜆

𝑎
+

𝜆

𝑎𝑁
=

𝜆 + Δ𝜆

𝑎
  →   Δ𝜆 =

𝜆

𝑁
(9) 

Mivel 𝑁 = 𝐷 𝑎⁄ = 60 000 : 

Δ𝜆 = 8,33 pm. (10) 

Fenti érték közvetlenül megkapható az ℛ felbontóképesség képletéből (ld. előadás): 

ℛ ≡
𝜆

Δ𝜆
= 𝑚 ∙ 𝑁. (11) 

2. Transzmisszív diffrakciós rács ferde beesés esetén  

Az „A” pontban lévő résnél a 𝜃 szög alatt belépő síkhullám fázisa: 𝜑A, „B” pontban pedig 

𝜑B = 𝜑A +
2𝜋

𝜆0
𝑂𝑃𝐿. (12) 

A „B” pontban lévő rés által diffraktált hullámot a távoltérben 𝜃′ szög alatt vizsgálva egy ilyen 
irányú síkhullámként érzékeljük. Ezt a síkhullámot virtuálisan visszavezetjük a rácshoz és 
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megrajzoljuk a „B” ponton keresztül átmenő hullámfrontját, ami mentén a fázis végig a (12) 
által meghatározott érték. Az „A” és „B” résekből diffraktált hullámok fázisát e hullámfront 
mentén a „C” pontban hasonlítjuk össze. Itt az „A” rés által diffraktált hullám fázisa: 

  

𝜑C = 𝜑A +
2𝜋

𝜆0
𝑂𝑃𝐿′. (13) 

Az így kapott két fázis különbsége adja a többhullámú interferencia síkhullámkomponensei 
közötti fáziskülönbséget, amely az alábbi feltétel mellett konstruktív: 

𝛿 = 𝜑C − 𝜑B =
2𝜋

𝜆0
𝑂𝑃𝐿′ −

2𝜋

𝜆0
𝑂𝑃𝐿 = 𝑚2𝜋 (14) 

𝑂𝑃𝐿 = 𝑛 sin 𝜃 ∙ 𝑎   ;    𝑂𝑃𝐿′ = 𝑛′ sin 𝜃′ ∙ 𝑎 (15) 

𝑛′
2𝜋

𝜆0
sin 𝜃′ ∙ 𝑎 − 𝑛

2𝜋

𝜆0
sin 𝜃 ∙ 𝑎 = 𝑚2𝜋 (16) 

𝑛′
2𝜋

𝜆0
sin 𝜃′ = 𝑛

2𝜋

𝜆0
sin 𝜃 +

𝑚2𝜋

𝑎
(17) 

𝑘𝑦
′ = 𝑘𝑦 + 𝑚

2𝜋

𝑎
= 𝑘𝑦 + 𝑚𝐾 (18) 

𝐊 ≡ 𝐲̂ ∙
2𝜋

𝑎
, (19) 

ahol K neve „rácsvektor”. A (18) egyenlet tökéletes analógiát mutat a Fresnel-reflexiónál 
tanult fázisillesztéssel. Érdekesség, hogy mivel a fotonok impulzusa ℏ𝑘, diffrakciós rácsnál y 
irányban nem teljesül az impulzusmegmaradás, hiszen a rács kölcsönhat a beeső hullámmal. 

3. Fabry-Pérot-interferométer 

 

A fáziskülönbség értéke (merőleges beesés esetén) egy oda-visszaverődésre: 
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𝛿 =
2𝜋

𝜆0
2𝑑𝑛 = 𝑚 ∙ 2𝜋 (20) 

Merőleges beesés ( ≈ 0°), a bejövő tér komplex amplitudója E , az átmenő tér pedig E'. Mivel 
még egyforma tükrök esetén se lesz egyforma a transzmissziós tényező a két felületen ha 𝑛 ≠
𝑛′ (csak a T transzmittancia ugyanaz), ezért megkülönböztetve jelöljük őket 𝜏a  és  𝜏𝑏-vel: 

𝐸1 = 𝐸 ∙ 𝜏a ∙ 𝑒𝑖𝛿 2⁄ ∙ 𝜏𝑏 (21) 

𝐸2 = 𝐸 ∙ 𝜏a ∙ 𝑒𝑖𝛿 2⁄ ∙ 𝜌 ∙ 𝑒𝑖𝛿 ∙ 𝜌 ∙ 𝜏b (22) 

𝐸3 = 𝐸 ∙ 𝜏a ∙ 𝑒𝑖𝛿 2⁄ ∙ 𝜌2 ∙ 𝑒𝑖𝛿 ∙ 𝜌2 ∙ 𝑒𝑖𝛿 ∙ 𝜏b (23) 

𝐸𝑁 = 𝐸 ∙ 𝜏a𝜏b ∙ 𝑒𝑖𝛿 2⁄ ∙ (𝜌2 ∙ 𝑒𝑖𝛿)
𝑁−1

(24) 

Ha |𝑞| < 1, akkor 

𝑆𝑁 = 𝑎1

1 − 𝑞𝑁

1 − 𝑞
   ;    lim

𝑁→∞
𝑆𝑁 = 𝑎1

1

1 − 𝑞
  ;   𝑎1 = 𝐸 ∙ 𝜏a𝜏b ∙ 𝑒𝑖𝛿 2⁄    ;    𝑞 = 𝜌2 ∙ 𝑒𝑖𝛿 (25) 

𝐸′ = ∑ 𝐸𝑗

𝑁→∞

𝑗=1

= 𝐸 ∙ 𝜏a𝜏b ∙ 𝑒𝑖
𝛿
2 ∙

1

1 − 𝜌2 ∙ 𝑒𝑖𝛿
(26) 

A Poynting-vektor definíciójából számolt intenzitás (itt a két külső közeg egyforma): 

𝐼 =
v𝜀

2
|𝐸|2   és   𝐼′ =

v𝜀

2
|𝐸′|2, (27) 

valamint a Fresnel-formuláknál megtanultuk, hogy merőleges beesés esetén: 

𝑇 = |𝜏a|2 ⋅
𝑛

𝑛′
= |𝜏b|2 ⋅

𝑛′

𝑛
  ⇒   |𝜏a|2 ⋅ |𝜏b|2 = |𝜏a|2 ⋅

𝑛

𝑛′
⋅ |𝜏b|2 ⋅

𝑛′

𝑛
= 𝑇2 (28) 

Tehát (26)-ból komplex konjugálttal való szorzás után ez lesz (feltéve, hogy ρ valós): 

𝐼′ = 𝐼 ∙ 𝑇2 ∙
1

1 − 𝑅 ∙ 𝑒−𝑖𝛿 − 𝑅 ∙ 𝑒𝑖𝛿 + 𝑅2
=

𝐼 ∙ 𝑇2

1 − 𝑅 ∙ 2 cos 𝛿 + 𝑅2
(29) 

Felhasználva, hogy cos 2𝛼 ≡ 1 − 2 sin2 𝛼 : 

𝐼′

𝐼
=

𝑇2

1 − 2𝑅(1 − 2 sin2(𝛿 2⁄ )) + 𝑅2
=

𝑇2

(1 − 𝑅)2 + 4𝑅 sin2(𝛿 2⁄ )
= (

𝑇

1 − 𝑅
)

2 1

1 +
4𝑅

(1 − 𝑅)2 sin2(𝛿 2⁄ )
(30) 

Ha a rétegekben nincs abszorpció, akkor R + T = 1. Airy-függvény: 

𝐼′

𝐼
=

1

1 +
4𝑅

(1 − 𝑅)2 sin2(𝛿 2⁄ )
. (31) 

Az interferenciacsúcsok helyei: 

 𝛿 2⁄ = 𝑚 ∙ 𝜋        𝛿 = 𝑚 ∙ 2𝜋      𝑚 ∈ ℕ+ (32) 

Ha ρ nem valós, akkor a komplex reflexiós tényező miatt fellépő fázistolás hozzáadódik δ-hoz, 
és ez vízszintesen eltolja az Airy-függvényt. A tükörrétegekben lévő esetleges abszorpció 
esetén pedig a csúcsok nem érik el az 1-et. A csúcsok félértékszélessége: 

1

1 +
4𝑅

(1 − 𝑅)2 sin2(𝛿1 2⁄ 2⁄ )
=

1

2
(33) 

sin
𝛿1 2⁄

2
=

1 − 𝑅

2√𝑅
(34) 
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Ha R közel egységnyi, akkor a jobb oldalon igen kis szám áll, azaz 

sin
𝛿1 2⁄

2
≈

𝛿1 2⁄

2
(35) 

𝛿1 2⁄ =
1 − 𝑅

√𝑅
  →   𝛿𝐹𝑊𝐻𝑀 = 2

1 − 𝑅

√𝑅
(36) 

ℱ ≡
2𝜋

𝛿𝐹𝑊𝐻𝑀
=

𝜋√𝑅

1 − 𝑅
. (37) 

Ez a „finesse” értéke tipikusan 30..1000 között van. Könnyen igazolható, hogy amennyiben 
𝑅 → 1,0, akkor az Airy-függvény tart az ún. Lorentz-eloszláshoz. 

4. Mennyivel kell a hullámhosszat arrébbhangolni, hogy a fázis  
éppen δFWHM-el változzon meg? 

2𝜋

𝜆 + Δ𝜆
2𝑑 −

2𝜋

𝜆
2𝑑 = 𝛿𝐹𝑊𝐻𝑀 (38) 

Mivel  
1

1 + b
≈ 1 − 𝑏 ,    ha    𝑏 ≪ 1 (39) 

1

𝜆 + Δ𝜆
=

1

𝜆

1

1 +
Δ𝜆
𝜆

≈
1

𝜆
(1 −

Δ𝜆

𝜆
) =

1

𝜆
−

Δ𝜆

𝜆2
(40) 

Ezt beírva (38)-be: 

−
Δ𝜆

𝜆2
2𝜋2𝑑 = 𝛿𝐹𝑊𝐻𝑀 (41) 

Felbontóképesség ℛ (Taylor-kritérium), értéke (41) átrendezésével megkapható: 

ℛ ≡ |
𝜆

Δ𝜆
| =

1

𝛿𝐹𝑊𝐻𝑀

2𝜋2𝑑

𝜆
=

𝑚 ∙ 2𝜋

𝛿𝐹𝑊𝐻𝑀
= 𝑚 ∙ ℱ. (42) 

Itt m sokkal nagyobb lehet, mint a diffrakciós rácsok esetében! Az interferenciacsúcsokat 
lézertechnikában longitudinális rezonátormódusnak nevezik. Pl. He-Ne lézer: λ = 633 nm, d = 
150 mm estén: 
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𝑚 =
2𝑑

𝜆
=

300

633 ∙ 10−6
= 473 934 ! (43) 

Egy He-Ne lézer zárótükrének a reflektanciája nagyobb mint 99,9%, a kicsatoló tüköré pedig 
kb. 99%. Ha ezek mértani közepét helyettesítjük be a finesse képletébe: 

ℱ =
𝜋√𝑅

1 − 𝑅
=

𝜋√0.989

1 − 0.989
= 284 (44) 

Ekkor a felbontóképesség 

ℛ = 𝑚 ∙ ℱ = 1,346 ∙ 108 (45) 

Egy interferenciacsúcs félértékszélessége pedig (42) alapján: 

Δ𝜆 =
𝜆

ℛ
=

633 nm

1,346 ∙ 108
= 0,0047 pm ! (46) 

Ez frekvenciában 3,5 MHz-es sávszélességnek felel meg (ld. egymódusú lézer). A közönséges 
He-Ne lézerek egyszerre több módusban működnek (tipikusan 2-5), amelyek 1000-200 MHz 
távolságban vannak egymástól. 

Alkalmazás: lézerrezonátorok, Fabry-Pérot etalonok, optikai sávszűrők, spektrumanalizátorok, 
rezonátor-lecsengési spektroszkópia (cavity ring-down spectroscopy) stb. 


